22 research outputs found

    Response surface methodology of Die-Sink-Electro-Discharge machined surfaces

    Get PDF
    The performance of most manufacturing processes depends on numerous parameters and their interactions. Most of the time, selection of an appropriate set of machining parameters is done based on experience, trial and error or both. Electro-discharge machining (EDM) process is complicated and random in nature. The large number of parameters and the inherent complexity of removal mechanism taking place in EDM make it even more difficult to select machining conditions for optimal performance. The objective of this study is to provide information on the relationships between the key input variables and resultant surface roughness and to develop a response model for surface roughness optimization utilizing factorial designs, direction of steepest descent method and response surface methodology (RSM). Experiments were setup and executed to understand the individual and combined impact of factors that included the following input variables: gap voltage, depth of penetration, electrode type, and average current and pulse duration. Six iterations were executed in the direction of steepest descent for minimization of surface roughness. Pulse duration and average current have been shown to have significant effect on surface roughness. Depth of penetration was found to be insignificant and was eliminated in the subsequent experiments. Graphite electrode gave better surface finish than copper electrode at given factor level combination. The results shows that graphite electrode can be used in finishing operation while achieving the unprecedented surface quality that was only attainable with copper electrode in such operations. The best surface roughness 0.96um Ra was achieved. Response surface model based on a central composite experimental design was established to give better idea about the relationship between significant parameters, their interactions and surface finish. A higher order model is developed that can relate process inputs to response. The results obtained may be used to recommend process setting to improve process robustness and to get the desired surface roughness

    On learning and generalization in unstructured taskspaces

    Full text link
    L'apprentissage robotique est incroyablement prometteur pour l'intelligence artificielle incarnée, avec un apprentissage par renforcement apparemment parfait pour les robots du futur: apprendre de l'expérience, s'adapter à la volée et généraliser à des scénarios invisibles. Cependant, notre réalité actuelle nécessite de grandes quantités de données pour former la plus simple des politiques d'apprentissage par renforcement robotique, ce qui a suscité un regain d'intérêt de la formation entièrement dans des simulateurs de physique efficaces. Le but étant l'intelligence incorporée, les politiques formées à la simulation sont transférées sur du matériel réel pour évaluation; cependant, comme aucune simulation n'est un modèle parfait du monde réel, les politiques transférées se heurtent à l'écart de transfert sim2real: les erreurs se sont produites lors du déplacement des politiques des simulateurs vers le monde réel en raison d'effets non modélisés dans des modèles physiques inexacts et approximatifs. La randomisation de domaine - l'idée de randomiser tous les paramètres physiques dans un simulateur, forçant une politique à être robuste aux changements de distribution - s'est avérée utile pour transférer des politiques d'apprentissage par renforcement sur de vrais robots. En pratique, cependant, la méthode implique un processus difficile, d'essais et d'erreurs, montrant une grande variance à la fois en termes de convergence et de performances. Nous introduisons Active Domain Randomization, un algorithme qui implique l'apprentissage du curriculum dans des espaces de tâches non structurés (espaces de tâches où une notion de difficulté - tâches intuitivement faciles ou difficiles - n'est pas facilement disponible). La randomisation de domaine active montre de bonnes performances sur le pourrait utiliser zero shot sur de vrais robots. La thèse introduit également d'autres variantes de l'algorithme, dont une qui permet d'incorporer un a priori de sécurité et une qui s'applique au domaine de l'apprentissage par méta-renforcement. Nous analysons également l'apprentissage du curriculum dans une perspective d'optimisation et tentons de justifier les avantages de l'algorithme en étudiant les interférences de gradient.Robotic learning holds incredible promise for embodied artificial intelligence, with reinforcement learning seemingly a strong candidate to be the \textit{software} of robots of the future: learning from experience, adapting on the fly, and generalizing to unseen scenarios. However, our current reality requires vast amounts of data to train the simplest of robotic reinforcement learning policies, leading to a surge of interest of training entirely in efficient physics simulators. As the goal is embodied intelligence, policies trained in simulation are transferred onto real hardware for evaluation; yet, as no simulation is a perfect model of the real world, transferred policies run into the sim2real transfer gap: the errors accrued when shifting policies from simulators to the real world due to unmodeled effects in inaccurate, approximate physics models. Domain randomization - the idea of randomizing all physical parameters in a simulator, forcing a policy to be robust to distributional shifts - has proven useful in transferring reinforcement learning policies onto real robots. In practice, however, the method involves a difficult, trial-and-error process, showing high variance in both convergence and performance. We introduce Active Domain Randomization, an algorithm that involves curriculum learning in unstructured task spaces (task spaces where a notion of difficulty - intuitively easy or hard tasks - is not readily available). Active Domain Randomization shows strong performance on zero-shot transfer on real robots. The thesis also introduces other variants of the algorithm, including one that allows for the incorporation of a safety prior and one that is applicable to the field of Meta-Reinforcement Learning. We also analyze curriculum learning from an optimization perspective and attempt to justify the benefit of the algorithm by studying gradient interference
    corecore